Step-Indexed Evaluator

…Copied from 12-imp.md:

Chapter ImpCEvalFun provide some workarounds to make functional evalution works:

  1. step-indexed evaluator, i.e. limit the recursion depth. (think about Depth-Limited Search).
  2. return option to tell if it’s a normal or abnormal termination.
  3. use LETOPT...IN... to reduce the “optional unwrapping” (basicaly Monadic binding >>=!)
    this approach of let-binding became so popular in ML family.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Notation "'LETOPT' x <== e1 'IN' e2"
:= (match e1 with
| Some x ⇒ e2
| None ⇒ None
end)
(right associativity, at level 60).

Open Scope imp_scope.
Fixpoint ceval_step (st : state) (c : com) (i : nat)
: option state :=
match i with
| O ⇒ None (* depth-limit hit! *)
| S i' ⇒
match c with
| SKIP
Some st
| l ::= a1 ⇒
Some (l !-> aeval st a1 ; st)
| c1 ;; c2 ⇒
LETOPT st' <== ceval_step st c1 i' IN (* option bind *)
ceval_step st' c2 i'
| TEST b THEN c1 ELSE c2 FI ⇒
if (beval st b)
then ceval_step st c1 i'
else ceval_step st c2 i'
| WHILE b1 DO c1 END ⇒
if (beval st b1)
then LETOPT st' <== ceval_step st c1 i' IN
ceval_step st' c i'
else Some st
end
end.
Close Scope imp_scope.

Relational vs. Step-Indexed Evaluation

Prove ceval_step is equiv to ceval

->

1
2
3
Theorem ceval_step__ceval: forall c st st',
(exists i, ceval_step st c i = Some st') ->
st =[ c ]=> st'.

The critical part of proof:

  • destruct for the i.
  • induction i, generalize on all st st' c.
    1. i = 0 case contradiction
    2. i = S i' case;
      destruct c.
      • destruct (ceval_step ...) for the option
        1. None case contradiction
        2. Some case, use induction hypothesis…

<-

1
2
3
4
5
6
Theorem ceval__ceval_step: forall c st st',
st =[ c ]=> st' ->
exists i, ceval_step st c i = Some st'.
Proof.
intros c st st' Hce.
induction Hce.