make the STLC into a PL!

Simple Extensions to STLC

其实这一部分我好像没有任何必要做笔记……

Numbers

See StlcProp.v exercise stlc_arith.

Let Bindings

  • In PLT slide, we treat let x = t1 in e as a derived form of (λx . e) t1.
  • In PLT langF, we treat let x:T = t1 in e as a derived form of (λx:T . e) t1. (both require explicit type annotation)

SF here, same as TaPL, treat it less derived by _compute the type T1 from t1.

  • but TaPL treat it by desugar to λ later on, here we directly “execute” it via substituion.

我想这里有一个原因是, λ 必须要可以独立被 typed,但是这时候我们还没有 t1,无法计算出 T1。而 let 的形式中包括了 t1,所以可以直接计算:

1
2
3
t ::=                Terms
| ...
| let x=t in t let-binding
Reduction:

                             t1 --> t1'
                 ----------------------------------               (ST_Let1)
                 let x=t1 in t2 --> let x=t1' in t2

                    ----------------------------              (ST_LetValue)  <-- substitute as λ
                    let x=v1 in t2 --> [x:=v1]t2

Typing:

         Gamma |- t1 \in T1      x|->T1; Gamma |- t2 \in T2
         --------------------------------------------------        (T_Let)
                    Gamma |- let x=t1 in t2 \in T2

Pairs (Product Type)

1
2
3
4
5
6
7
8
9
10
11
12
13
t ::=                Terms
| ...
| (t,t) pair
| t.fst first projection
| t.snd second projection

v ::= Values
| ...
| (v,v) pair value

T ::= Types
| ...
| T * T product type
Reduction:

                          t1 --> t1'
                     --------------------                        (ST_Pair1)
                     (t1,t2) --> (t1',t2)

                          t2 --> t2'
                     --------------------                        (ST_Pair2)
                     (v1,t2) --> (v1,t2')

                          t1 --> t1'
                      ------------------                          (ST_Fst1)
                      t1.fst --> t1'.fst

                      ------------------                       (ST_FstPair)
                      (v1,v2).fst --> v1

                          t1 --> t1'
                      ------------------                          (ST_Snd1)
                      t1.snd --> t1'.snd

                      ------------------                       (ST_SndPair)
                      (v1,v2).snd --> v2


Typing:

           Gamma |- t1 \in T1     Gamma |- t2 \in T2
           -----------------------------------------               (T_Pair)
                   Gamma |- (t1,t2) \in T1*T2

                    Gamma |- t \in T1*T2
                    ---------------------                          (T_Fst)
                    Gamma |- t.fst \in T1

                    Gamma |- t \in T1*T2
                    ---------------------                          (T_Snd)
                    Gamma |- t.snd \in T2

Unit (Singleton Type) 单元类型

unit is the only value/normal form of type Unit, but not the only term (also any terms that would reduce to unit)

1
2
3
4
5
6
7
8
9
10
11
t ::=                Terms
| ...
| unit unit -- often written `()` as well

v ::= Values
| ...
| unit unit value

T ::= Types
| ...
| Unit unit type -- Haskell even write this `()`
No reduction rule!

Typing:

                     ----------------------                        (T_Unit)
                     Gamma |- unit \in Unit

wouldn’t every computation living in such a type be trivial?
难道不是每个计算都不会在这样的类型中居留吗?

Where Unit really comes in handy is in richer languages with side effects
在更丰富的语言中,使用 Unit 类型来处理副作用(side effect) 会很方便

Sum Type (Disjointed Union)

deal with values that can take two distinct forms — binary sum type
两个截然不同的 … “二元和”类型

We create elements of these types by tagging elements of the component types
我们在创建这些类型的值时,会为值标记上其”成分”类型

标签 inl, inr 可以看做为函数,即 Data Constructor

inl : Nat  -> Nat + Bool
inr : Bool -> Nat + Bool

that “inject” (注入) elements of Nat or Bool into the left and right components of the sum type Nat+Bool

不过这里并没有把他们作为 function 来形式化,而是把 inl inr 作为关键字,把 inl t inr t 作为 primitive syntactic form…

  • In PLT slide, we use L (e) and say the T2 would be “guessed” to produce T1 + T2, as TaPL option 1
  • In PLT langF, we use L [T1 +T2] (e) i.e. provide a explicit type annotation for the sum type, as TaPL option 3 (ascription)

SF here, use something in the middle:

  • you provide only T2 to L(t1) and T1 would be computed from t1 to form the T1 + T2.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
t ::=                Terms
| ...
| inl T t tagging (left)
| inr T t tagging (right)
| case t of case
inl x => t
| inr x => t

v ::= Values
| ...
| inl T v tagged value (left)
| inr T v tagged value (right)

T ::= Types
| ...
| T + T sum type
Reduction:

                           t1 --> t1'
                    ------------------------                       (ST_Inl)
                    inl T2 t1 --> inl T2 t1'

                           t2 --> t2'
                    ------------------------                       (ST_Inr)
                    inr T1 t2 --> inr T1 t2'

                           t0 --> t0'
           -------------------------------------------            (ST_Case)
            case t0 of inl x1 => t1 | inr x2 => t2 -->
           case t0' of inl x1 => t1 | inr x2 => t2

        -----------------------------------------------        (ST_CaseInl)
        case (inl T2 v1) of inl x1 => t1 | inr x2 => t2
                       -->  [x1:=v1]t1

        -----------------------------------------------        (ST_CaseInr)
        case (inr T1 v2) of inl x1 => t1 | inr x2 => t2
                       -->  [x2:=v1]t2

Typing:

                      Gamma |- t1 \in T1
               ------------------------------                       (T_Inl)
               Gamma |- inl T2 t1 \in T1 + T2

                      Gamma |- t2 \in T2
               -------------------------------                      (T_Inr)
                Gamma |- inr T1 t2 \in T1 + T2

                    Gamma |- t \in T1+T2
                 x1|->T1; Gamma |- t1 \in T
                 x2|->T2; Gamma |- t2 \in T
     ----------------------------------------------------          (T_Case)
     Gamma |- case t of inl x1 => t1 | inr x2 => t2 \in T

Lists

The typing features we have seen can be classified into

  • 基本类型 base types like Bool, and
  • 类型构造子 type constructors like and * that build new types from old ones.

In principle, we could encode lists using pairs, sums and recursive types. (and type operator to give the type a name in SystemFω)

但是 recursive type 太 non-trivial 了……于是我们直接处理为一个特殊的类型吧

  • in PLT slide, again, we omit the type and simply write nil : List T

    • 有趣的是, Prof.Mtf 并不满意这个,因为会有 hd nil 这样 stuck 的可能,所以额外给了一个用 unlist (unempty list) 的 def
  • in PLT langF, we did use pairs + sums + recursive types:

    • langF nil : all('a . rec('b . unit + ('a * 'b)))
    • StlcE nil : ∀α . µβ . unit + (α ∗ β)
  • in TaPL ch11, we manually provide T to all term (data constructor)

    • but actually, only nil need it! (others can be inferred by argument)

and that’s we did for SF here!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
t ::=                Terms
| ...
| nil T -- nil need explicit type annotation
| cons t t
| lcase t of nil => t -- a special case for list
| x::x => t

v ::= Values
| ...
| nil T nil value
| cons v v cons value

T ::= Types
| ...
| List T list of Ts
Reduction:

                            t1 --> t1'
                   --------------------------                    (ST_Cons1)
                   cons t1 t2 --> cons t1' t2

                            t2 --> t2'
                   --------------------------                    (ST_Cons2)
                   cons v1 t2 --> cons v1 t2'

                          t1 --> t1'
            -------------------------------------------         (ST_Lcase1)
             (lcase t1 of nil => t2 | xh::xt => t3) -->
            (lcase t1' of nil => t2 | xh::xt => t3)

           -----------------------------------------          (ST_LcaseNil)
           (lcase nil T of nil => t2 | xh::xt => t3)
                            --> t2

        ------------------------------------------------     (ST_LcaseCons)
        (lcase (cons vh vt) of nil => t2 | xh::xt => t3)
                      --> [xh:=vh,xt:=vt]t3                  -- multiple substi


Typing:

                    -------------------------                       (T_Nil)
                    Gamma |- nil T \in List T

         Gamma |- t1 \in T      Gamma |- t2 \in List T
         ---------------------------------------------             (T_Cons)
                Gamma |- cons t1 t2 \in List T

                    Gamma |- t1 \in List T1
                    Gamma |- t2 \in T
            (h|->T1; t|->List T1; Gamma) |- t3 \in T
      ---------------------------------------------------         (T_Lcase)
      Gamma |- (lcase t1 of nil => t2 | h::t => t3) \in T

General Recursion (Fixpoint)

通用的递归,而非 primitive recursion (PFPL)

1
fact = \x:Nat . if x=0 then 1 else x * (fact (pred x)))

这个在 Stlc 中不被允许,因为我们在定义 fact 的过程中发现了一个 free 的 fact,要么未定义,要么不是自己。
所以我们需要 Fixpoint

1
2
fact = fix (\fact:Nat->Nat. 
\x:Nat . if x=0 then 1 else x * (fact (pred x)))
1
2
3
t ::=                Terms
| ...
| fix t fixed-point operator

Reduction:

                            t1 --> t1'
                        ------------------                        (ST_Fix1)
                        fix t1 --> fix t1'

           --------------------------------------------         (ST_FixAbs)
           fix (\xf:T1.t2) --> [xf:=fix (\xf:T1.t2)] t2         -- fix f = f (fix f)

Typing:

                       Gamma |- t1 \in T1->T1
                       ----------------------                       (T_Fix)
                       Gamma |- fix t1 \in T1

Records

这里的定义非常 informal:

1
2
3
4
5
6
7
8
9
10
11
12
t ::=                          Terms
| ...
| {i1=t1, ..., in=tn} record
| t.i projection

v ::= Values
| ...
| {i1=v1, ..., in=vn} record value

T ::= Types
| ...
| {i1:T1, ..., in:Tn} record type
Reduction:

                          ti --> ti'
             ------------------------------------                  (ST_Rcd)
                 {i1=v1, ..., im=vm, in=ti , ...}
             --> {i1=v1, ..., im=vm, in=ti', ...}

                          t1 --> t1'
                        --------------                           (ST_Proj1)
                        t1.i --> t1'.i

                  -------------------------                    (ST_ProjRcd)
                  {..., i=vi, ...}.i --> vi

Typing:

        Gamma |- t1 \in T1     ...     Gamma |- tn \in Tn
      ----------------------------------------------------          (T_Rcd)
      Gamma |- {i1=t1, ..., in=tn} \in {i1:T1, ..., in:Tn}

                Gamma |- t \in {..., i:Ti, ...}
                -------------------------------                    (T_Proj)
                      Gamma |- t.i \in Ti

其他

提了一嘴

  • Variant
  • Recursive type μ

加起来就可以

give us enough mechanism to build arbitrary inductive data types like lists and trees from scratch

Basically

ADT = Unit + Product + Sum (Variant) + Function (Expo)

但是 Coq 的 Inductive 还需要进一步的 Pi (Dependent Product), Sigma (Dependent Sum).

Exercise: Formalizing the Extensions

STLCE definitions

基本上就是把上面的 rule 用 AST 写进来

STLCE examples

a bit of Coq hackery to automate searching for typing derivation

基本上就是自动化的 pattern matching + tactics

1
2
3
4
5
6
7
Hint Extern 2 (has_type _ (app _ _) _) =>
eapply T_App; auto.

Hint Extern 2 (has_type _ (tlcase _ _ _ _ _) _) =>
eapply T_Lcase; auto.

Hint Extern 2 (_ = _) => compute; reflexivity.

效果非常酷:typecheck 只需要 eauto,reduction 只需要 normalize.